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ON EQUILIBRIUM PATTERNS OF FLUID BODIES SITUATED 
AT LIBRATION POINTS* 

1u.V. BARKIN 

The motion of a fluid body is considered in a field of Newtonian attraction of two 
bodies circulating about a common center of mass along Keplerian circular orbits. 
Particular solutions of the problem are obtained on the assumption that the dimen- 
sions of the fluid body are small in comparison withthedistancesbetweenthebodies. 
To these solutions correspond positions of the body center of mass at libration 
points of the limited circular problem of three bodies, a fixed position of the 
principal central axes of inertia in an orbital coordinate system, and ellipsoidal 
equilibrium patterns. 

The first steps towards formulation of the general problem of motion of a system of de- 
formable bodies gravitating to each other were taken in /l/. The basic idea is that transla- 
tional motions of celestial bodies, the rotational motions of their axes of inertia, and 
motions of individual particles of these bodies are interrelated and mustbegenerallyinvesti- 
gated jointly. The first integrals of the problem of deformable bodies (integralsofmomentum 
and of moment of momentum which generalize classic integrals) were obtained in /l/, where 

cases of existence of the energy integral were also indicated. 

1. The equations of motion of a fluid body. Consider the motion of a homogene- 
ous fluid body M in the field of Newtonian attraction of two bodies M, and M, moving around 
their common center of mass G on Keplerian circular orbits. We shall consider bodies M,,M, 
asmaterialpoints, andassumethatthemass of body M is negligibly small in comparison with 
masses m, and m, of basic bodies Ml and M1. Particles of the fluid body interact with each 
other in conformity with Newton's law. 

Let GXY.Z be an inertial coordinate system with origin at the center of mass of bodies 

M,, Me and axes GX,GY in the plane of the basic bodies orbit; let Gzyz be a rotating co- 
ordinate system whose axis Gz coincide with axis GZ and axis G;c coincide with line M,M, 
and be directed toward body M,;OXYZ be a coordinate system with origin at the centerofmass 
0 of the fluid body and axes parallel to the respective coordinate axes GXYZ, and G%n% be 
the "proper" coordinate system of bodyM whose axes are oriented along its instantaneousprin- 
cipal central axes of inertia. 

We define the motion of the body by the following coordinates: 50, $0, ~0 the coordinates 
of its center of mass 0 in the fixed axes, Euler's angles ip, 8, 'p which determine the respect- 
ive orientation of coordinate axes O%q% and OXYZ, coordinates and projections Et r), 5, n, v, w 
of the relative velocity of individual particle of the body in the system of coordinatesG%r,%, 
and projections P, Q and rof the angular velocity of rotation of the propercoordinatesystem 
on axes O%, 03 05. 

The equations of motion of body M are obtained using the principle of least action, as 
formulated by Hamilton- 
%, I, f are of the form 

Ostrogradskii /2/, and expressed in variables zo, &,,z,,p, q, r, u,v, w, 

~(Ap+P)+qR--tQi-fC--B)qr= (~-oose2E) zf$ - + cosrp g. 

(1.3) 

(=J+atz + Yo'eza + zda,P)r---pp%p+ "A + Cr)+ ys 
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where 

m = p0 s dr, po= const, Q= VP'+ q*+ ~2, .4==~0~(?~+5*)dr, s=+o~(~*;~*)dT 

c = PO j (q* i j*)dr. f’ = PO j (q’~ - [v)dr , Q = po j (& - 5~) dT, K - pa J (Ev -- tlu)dT 

The equations for yO- zO, q, r, v, w are obtained from Eqs.(l.l)- (1.3) by cyclicpermutation 
of respective variables. The system of equations is closed by the addition of the continuity 
equation &lai + &/a -t awla< = 0 and of Euler's kinematic equations /3/. 

In Eqs.(l.l)- (1.3) 51 is the angular velocity of rotation of the body axes of inertia, 
A, B, C are the principal central moments of inertia that correspond to axes Ot,On , 0; of 
the body, P,Q,R are projections of the moment of momentum of fluid particles inthe"proper" 
coordinate system on axes 05, On, Ot. a,,(i, j = 1,2,3) are the directional cosinesof axes OEn! 
in the system of coordinates OXYZ which are known functions of Euler's angles /3/, m is the 
mass of the fluid body, and Dis the pressure. Integration is extended over the whole volume 
T occupied by body M at a given instant of time. 

The force function 17 of Newtonian interaction of the fluid body with the basic bodies 
fifr and Mzis defined by the expansion 

il.41 

r,? : (x0 - Ii)? _t (y. - y,)' i zo* 
IO-- I. YO - Y, 

Pi = ull + + hl- 
20 

r’i 
+ =a1 - 

1 ri 

where f is the gravitational constant, ri is the distance between the center of mass of body &I 
and body Ml (i = i,2), pi, yi are cosines of angles between the straight line MiO and theaxes 
of inertia 0~ ,Oc, and zt,y, (zi = 0) are coordinates of body MI in the inertial coordinate 
system. Function IV combines all higher harmonics, beginning with the third, of expansion C. 

Function D'defines the Newtonian interaction of an arbitrary particle of body M that oc- 
cupies volume dr of the body with its remaining components and material points M,t MY 

where RI is the distance of the considered point of the fluid bod;r with coordinates 5. Y. z 
from body Mi in the inertial coordinate system, and R, is the distance between two arbitrary 
points of body AI at coordinates z’, y',z'and z,y,z in axes GXYZ, respectively, i.e. 

I 2: zrO + al,E + a,,n + a13j. . . 

x 7 IO L a,,E ‘_I. ’ n12rl + aIs5 . . . 

where 5, 11, 5 and i', q', 5 are coordinates of the indicated points in “proper" axes. Integra- 
tion in u,,' is extended over the whole volume occupied by body M. 

Let us point out some of the singularities of Eqs.(l.l)- (1.3), which constituteasystcm 

of integro-differential equations. The motion of individual particles of the body is related 
to its principal central axes of inertia. The three basic kinds of motions of the fluid body, 

viz. translational, rotating and deformation are interdependent /l/. Equations (l.l)- (1.3) 

admit one first integral which is a generalization of the classic Jacobi's integral for the 

limited circular problem of three material points or that of two points andan absolutely rigid 
body. 

2. Equilibrium patterns of a fluid body situated at rectilinear libration 
points. We shall aim at finding such particular solutions of Eqs. (l.l)- (1.3) according to 

which body M moves as an absolutely rigid body. In such motions the particles of the fluid 

body are stationary relative to its principal central axes of inertia, i.e. u=v=w=o, 
p -= Q =. R _ 0 and the moments of interia A,B.C are constant. 
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Let us make the simplifying assumption that the dimensions of the body are small in com- 
parison with the distances GM, and OM,. This enables us to introduce in the investigationthe 
small parameter p = Rli, where R is the largest dimension of the fluid body and F the min- 
imum distance to the attracting bodies Mr.&f,. 

We disregard in the right-hand sides of equations of motion the terms of order 1~. The 
equations of translational motion are then separated from Eqs.Cl.2) and (1.31, assuming the 
form of equations of the limited circular problem of three bodies(threematerialpoints).Equa- 
tions (1.2) and (1.3) remain interconnected and become integrable only after some solution of 
Sqs.(l.l) has been obtained for p = 0. Note that when p = 0 the terms calculated for the 

approxrmate value of the force function u, determined by formula (1.4) with W=O, are 

retained in the right-hand sides of Eqs.Cl.2). 
Taking into account the assumptions made above, Eqs.(l.l) and (1.2) admit the stationary 

solutions 
20 = ai cos nt, yo = CZi sin nt, 20 = 0, n2 = f (m, + mJ&” (2.1) 
p = 0, q = n, r = 0, e = ~12, cp = 0, * = nt 

where up is the radius of the orbit of basic bodies, al is the constant coordinate of mass 
center of body RI on the rotating axis Gx that corresponds to one of the three libration 

points (aI = -a,p,, az = a,~,, a3 = a, (i f pJ,where pr, pz, pa are constant quantities which are 
determined by solving known algebraic equations, 

/3/j. 

depending on the single parameter v = m,fm 1 

Solution (2.1) shows that the center of mass of the fluid body is located at one of the 
rectilinear libration points, and that its principal central axes of inertia have a fixed 
position in the rotating axes Gx~z. The body then rotates at constant angular velocity n 
(equal to the mean /velocity/ of the orbital motion of the basic bodies) relative to axis 
h of the orthogonal orbit plane. 

Lt remains to determine whether any solutions of Eq.Cl.3) are also valid for variables 
(2.1) when p =O. We shall show that on certain assumptions about the fluid body form, such 
solutions exist. 

Let us assume that body M is a homogeneous ellipsoid with semiaxes a,b, c,(setting for 
definiteness a>c> b), corresponding to inertia axes O&Gq, 05, and findoutwhatconstraints 
are to be imposed on the problem parameters, if Eqs.(l.3) are to admit ellipsoidal equili- 
brium forms for solution (2.1). 

For this we write the expression for the force function u,,f of the homogeneousellipsoid 
for the internal point (&,v, 5) /3/ 

(2.3) 

f3 = ~~abcp,, R (s) = ffa’ + s) (be + s) (c” + s)]‘:: 

When p =0, the force functions ul',U,' are determined by formulas 

U+=& [2ria- 2kri -ra -t 3cp] (i = 1,2), r=(t* + q* f c')l(* 

where ri is the distance'of body Mi from the corresponding libration point and r is the dist- 
ance of the particle of fluid at coordinates E, I, 5 from the center of mass of body &f. 

It is then possible to show that in the case of solution (2.1) and p = 0 thehydrodynamic 
equations (1.3) admit the first integral 

@a=-+$+ $-) -fF!Z 

OS= -&la -+'(~+~)-fFa 

f-D4 = n% i-f&+$) 

For the existence of ellipsoidal equilibrium patterns it is necessary that the isobar 
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D = const defined by Eqs.(2.4) and (2.5) coincides with the external surface of the fluid el- 
lipsoid surface. For this it is sufficient that the equalities 

(2.6) 

be satisfied. 
Condition (2.7) is satisfied by virtue of solution (2.1) 

body /3/. 
Conditions (2.6) together with formulas (2.5) define new 

ibrium patterns for each of the rectilinear libration points, 
patterns becoming Roche's ellipsoids when v -O(m, = 0). 

(2.7) 

for the orbital motion of the 

sequencies of ellipsoidal equil- 
with the obtained equilibrium 

3. Equilibrium patterns of a fluid body at triangular libration points. 
When u=u=w=O,~~=O, EqS.(l.l) and (1.2) admit one more stationary solution 

%(I - v) 0,fS 
zn = - I-OS nt - - s,n nt, 

l(liv) 2 aGZ.L! sin nt 
yO= 2(l+v) 

00 vs + 2 co9 nt, zo=o (3.1) 

p = 0, q = n, r = 0, e = n/2, Y = 0, 9 = *e +nt 

cos2$o= - (i f \a) (1- v,I/a 
2)/1--vfv" 

sin2q0= 
2Vl-v+v' 

(3.2) 

(for the system Earth-Moon v = i / 81.3 snd q0 = 60“18’243. 
Solution (3.1) implies that the center of mass of body Mlies at the triangularlibration 

point L, of the limited circular problem of three bodies, and the axes of inertia retain a 
fixed position in the rotating coordinate system Gxyz. Axes G& ,Gclie in the plane of the 
orbit, with axis 05 remaining at the constant angle I#, to the moving axis&r (Fig.1). 

Let us now assume that the body is a homogeneous ellipsoid with semiaxes n>c> b. The 
force function G,' is now, as previously, determined by formulas (2.2) and (2.3), while for 
force functions Ur', u; we have with thestatedaccuracy the following expressions: 

u;,*+.$ (5'(- rosa~O + 5 sin’* f 3 1/5sin 2%) _t 

t*(- sina\Ci, + 5 cosa(~o~ 3)/gein &) - GES(sin 290 f 1/3 cos 2$0)-4ql)‘) 

where q0 is the constant angle defined by formula (3.2). As the result the first integral of 
hydrodynamic equations assumes the form 

Y’,= +nn’+ & Ih + 4 co9 2% +)/%--m~+mr) sin 2W--fF, 

Y, = [ n;;(c\;;) -- & + g!pj [Lt!p ms$b-- - !$@I + w)] sin 90 

Y,= 
! 

nJo,(i -v) fm, -- 
2fi+v) 2%’ ++ 

1 
sin*0 + 

1 &If5 
‘2 - vq$ oh + md] COS (pa 

Yc= - $$(sin 290 + i/3cos 2$e) - t+(sin 2** - ~5~0s 2*@) 

me conditions of existence of ellipsoidal equilibrium patterns of the body located at a 
triangular libration point is determined in conformity with solution (3.1) by the system of 

equalities 
Y,o? = YY,b= = Y,c’, Y, = Y, = Yy( = 0 

It can be proved that in the case of the obtained value of $+, (3.2) Y8 = 0, while the 

quantities y,, Y, vanish by virtue of the solution of equations Of the translational-rota- 

tional motion (3.1). The remaininq equalities reduce to the fOm 

(S:,nz~l + b(v)] -_F,)aa=(--‘/ln’-ffFI)b’= (3.3) 

(3!rna [ 1 - 6 (v)l - fF,) ca, 6(v)= v*---v+v* 
1+v 
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for v =0 coincide with the known condi- 
of existence of Roche's ellipsoids /5/ 

and determine a sequence of ellipsoidal equili- 
brium patterns for the fluid body located at a 
triangular libration point L,. 

Remarks. lo. Condition p= 0 implies that 
terms of order Q/F)* (a very small quantity in 
the case of real celestial bodies) are neglected 
in the right-hand sides of Eqs.(l.l). 

2O. When p=O, the rotational motion of 
axes of inertia of bodyM are determined by the 
second harmonics of force functions of bodies 
M,M1 and M,M, (in this case the force function 
U is defined by formula (1.4) when W=O). 

Fig.1 
3O. When p =0 for a given circular motion 

of relative equilibrium of the fluid body, the 
problem of its ellipsoidal equilibrium patterns 
is formulated as the Roche's problem /5/. 

4O. For the derivation of exact particular solutions of equations of motion, and in- 
vestigation of their stability the methods in /2,5/ and others may be used. 
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